A fast optimization algorithm for multicriteria intensity modulated proton therapy planning.
نویسندگان
چکیده
PURPOSE To describe a fast projection algorithm for optimizing intensity modulated proton therapy (IMPT) plans and to describe and demonstrate the use of this algorithm in multicriteria IMPT planning. METHODS The authors develop a projection-based solver for a class of convex optimization problems and apply it to IMPT treatment planning. The speed of the solver permits its use in multicriteria optimization, where several optimizations are performed which span the space of possible treatment plans. The authors describe a plan database generation procedure which is customized to the requirements of the solver. The optimality precision of the solver can be specified by the user. RESULTS The authors apply the algorithm to three clinical cases: A pancreas case, an esophagus case, and a tumor along the rib cage case. Detailed analysis of the pancreas case shows that the algorithm is orders of magnitude faster than industry-standard general purpose algorithms (MOSEK'S interior point optimizer, primal simplex optimizer, and dual simplex optimizer). Additionally, the projection solver has almost no memory overhead. CONCLUSIONS The speed and guaranteed accuracy of the algorithm make it suitable for use in multicriteria treatment planning, which requires the computation of several diverse treatment plans. Additionally, given the low memory overhead of the algorithm, the method can be extended to include multiple geometric instances and proton range possibilities, for robust optimization.
منابع مشابه
Recent Advances in Intensity Modulated Proton Therapy Treatment Planning Optimization
Radiation therapy is a non-invasive treatment modality for cancer patients. Radiation therapy treatment planning for cancer patients provides many challenging optimization problems. Various variables of a treatment plan need to be optimized so that the resulting plan can kill all cancerous cells while minimizing damage on the patient’s normal tissues. Intensity modulated proton therapy (IMPT) h...
متن کاملDirect Aperture Optimization for Intensity Modulated Radiation Therapy: Two Calibrated Metaheuristics and Liver Cancer Case Study
Integrated treatment planning for cancer patients has high importance in intensity modulated radiation therapy (IMRT). Direct aperture optimization (DAO) is one of the prominent approaches used in recent years to attain this goal. Considering a set of beam directions, DAO is an integrated approach to optimize the intensity and leaf position of apertures in each direction. In this paper, first, ...
متن کاملIterative Approach for Automatic Beam Angle Selection in Intensity Modulated Radiation Therapy Planning
Introduction: Beam-angle optimization (BAO) is a computationally intensive problem for a number of reasons. First, the search space of the solutions is huge, requiring enumeration of all possible beam orientation combinations. For example, when choosing 4 angles out of 36 candidate beam angles, C36 = 58905 possible combinations exist. Second, any change in a beam 4 config...
متن کاملA method for standardizing intensity modulated radiation therapy planning optimization for nasopharyngeal carcinoma
Background: To investigate a method for standardizing intensity modulated radiation therapy (IMRT) optimization for nasopharyngeal carcinoma (NPC), in order to reduce the influence of subjective factors. Materials and Methods: This study is based on example IMRT plans for NPC, which were randomly divided into data acquisition and data verification groups. Organs at risk (OARs) were analyzed for...
متن کاملClustering of nasopharyngeal carcinoma intensity modulated radiation therapy plans based on k-means algorithm and geometrical features
Background: The design of intensity modulated radiation therapy (IMRT) plans is difficult and time-consuming. The retrieval of similar IMRT plans from the IMRT plan dataset can effectively improve the quality and efficiency of IMRT plans and automate the design of IMRT planning. However, the large IMRT plans datasets will bring inefficient retrieval result. Materials and Methods: An intensity-m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Medical physics
دوره 37 9 شماره
صفحات -
تاریخ انتشار 2010